Solving complex and multidisciplinary problems in industrial context

Ondo Constant Exelop, ondo@exelop.com

Simon Fuhlhaber
Time To Innovate, simon.fuhlhaber@time-to-innovate.com

Constant Ondo

- CEO of Exelop Switzerland
- Advanced Master in Innovative Design at INSA de Strasbourg
- Lean Six Sigma Master Black Belt
- 20 years experiences in Projects/Programs & process optimization

Simon Fuhlhaber

- CEO of Time To Innovate
- Master in Sofware Design
- 5 years at INSA de Strasbourg, working with Pr. Denis Cavallucci on IDM-TRIZ and STEPS development
- Member of TRIZ France Board

Inventive Design Network

Training and Research about IDM-TRIZ

STEPS Software Edition

Supporting companies

Help them to integrate IDM-TRIZ and STEPS

Improving flight safety

Protecting the spinal column during crash

- Resolution process
- Resolution tool
- Lessons learned

During a crash heavy forces are at work on the human body

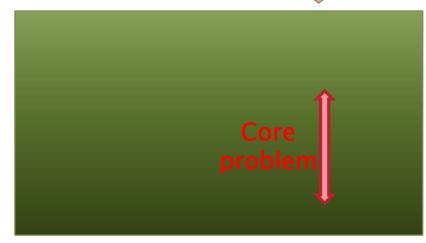
- ► To qualify for FAR 25 (Federal Aviation Regulation part 25)
- The column spine must be protected after a plan decelaration reaching 14g

At 14G the spinal column must be saved

Protecting the spinal column during crash

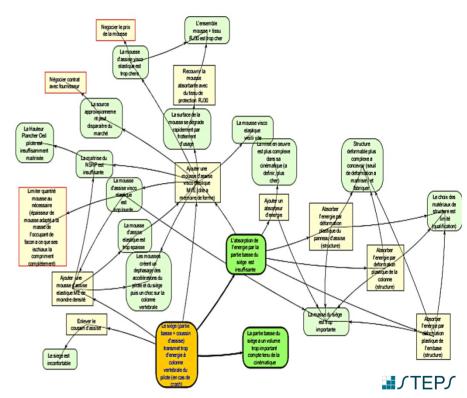
- Resolution process
- Resolution tool
- Lessons learned

Analysis of Initial Situation (AIS)


Different <u>foam</u> technologies have been tested. The result needed to be improved. Too much compromise on weight and cost.

It was required to:

- 1. Absorb kinetic energy
- 2. Reduce seat weight
- 3. Improve pilot comfort

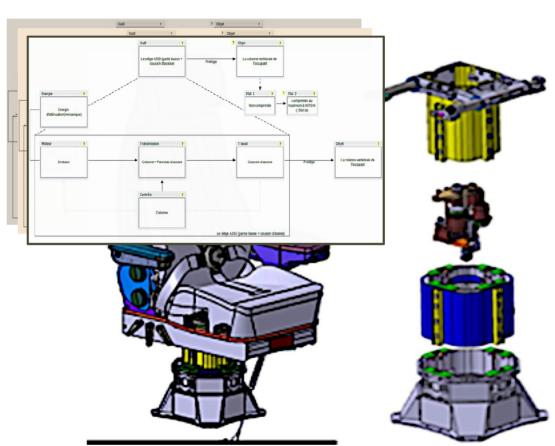


(AIS) Verify the core problem

Objectives:

- Learn from past experiences
- 2. Capitalize on tacit and explicit knowledge base
- 3. Learn from competitors
- 4. Focus the study on the most important problem/challenge
- 5. Align the whole team on the same vision

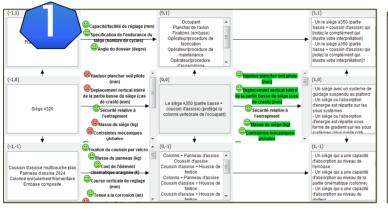
Conclusion: the foam was not the core problem

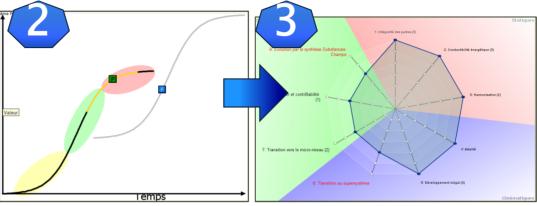


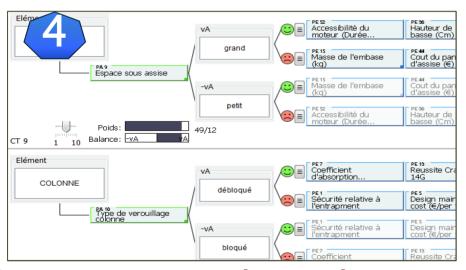
Define the system, verify core problem (law 1)

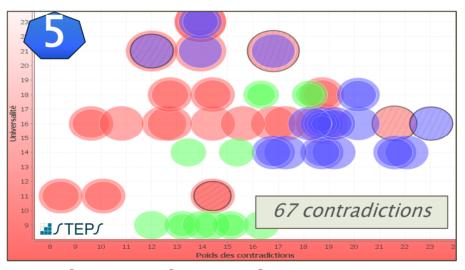
Objectives:

- 1. Verify the Main Useful function
- 2. Verify system completeness
- 3. Understand how different part should work

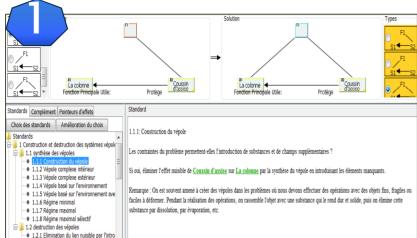

Assure that the system is well understood

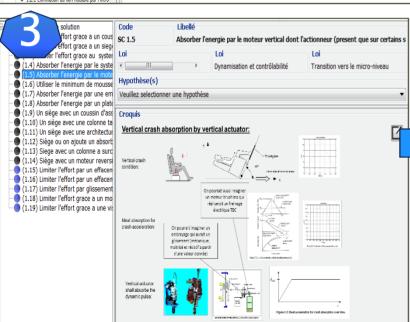


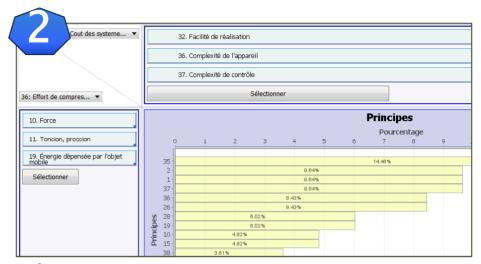


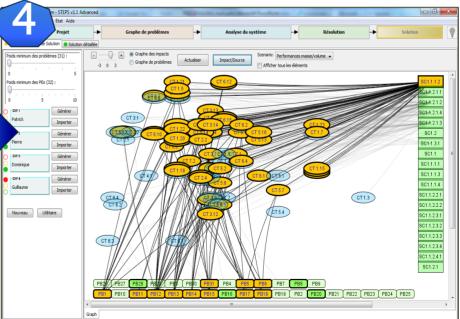

Generating the right contradictions Time To Innovate

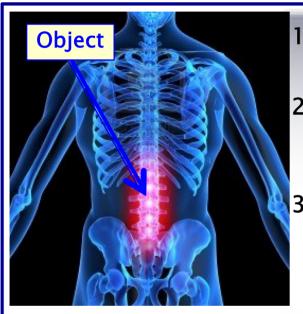
Translating laws and evolution hypothesis into measurable contradictions


Plobal




Conference 2013 in Korea


Solutioning through a step by step approach



A complete paradigm shift

- 1. Parts of the system were at different evolution stage
- The foam was trying to integrate functions pertaining to other part of the system
- 3. The "Engine", "Transmission" and the "Control" part of the system were not playing their role correctly

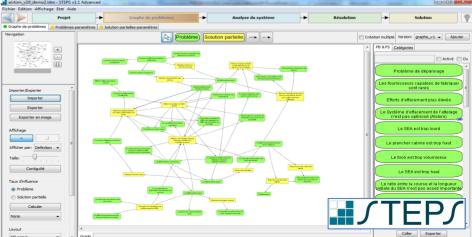
16 Solution Concepts, of which 3 were breakthrough candidates

Engine

Tool

- Protecting the spinal column during crash
- Resolution process
- Resolution tool
- Lessons learned

Industrial problems can be complex


They can also be:

- Multiple,
- Multidisciplinary,
- They are linked together,
- and some of them may have past resolution attempts (partial solutions)

Steps software helps easy capturing of complexity and translating it into tangible R&D or R&I scenarios

Making IDM-TRIZ easy

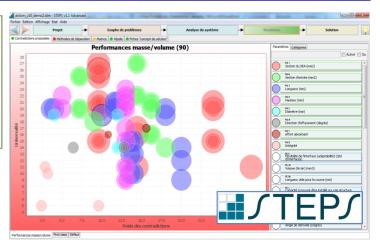
Complexity is governed by different conflicting parameters

Parameters can be:

Weight, Size, shape, field, etc.

Problem resolution involve solving contradictions:

- Industrial problems come with multiple interlinked contradictions
- Selecting the right contradiction is crucial for efficient project management

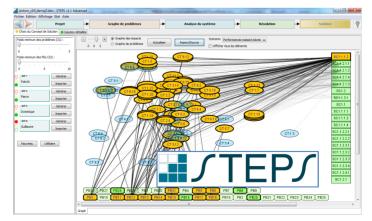


Steps software helps:

- 1. classify contradictions according to scenario.
- 2. Select the best contradiction to solve

Making IDM-TRIZ easy

Resolution can lead to many solution concepts (unless you use ARIZ)


- Working on all solution concepts may not be realistic nor cost effective.
- Ability to select the best concept is a key success factor.
- Selection must be as objective as possible and in line with company's strategy

Steps software allows you to:

- 1. Measure impact a concept will have on the problem network
- 2. Select the most effective solution concept

Making IDM-TRIZ easy

- Protecting the spinal column during crash
- Resolution process
- Resolution tool
- **Lessons** learned

METHODOLOGY

- 1. Analysis of initial situation is key for:
 - Bringing the Team together
 - Working on the right problem
- 2. Evolution hypothesis from MSA & LAWs need to be grouped according to system's parts
- 3. Building contradiction according to hypothesis is still challenging
- 4. Separation principles can be very effective

PROCESS

- 1. Train
- 2. Right sizing the Pilote (scope & time)
- 3. Organise
- 4. Rollout

TOOLS

- 1. Strong management support is needed
- 2. Sponsor's long term involvement required
- 3. Team selection can make a difference

THANK YOU 대단히 감사합니다

