

Y POLITECNICO DI MILANO

Niccolò Becattini

Gaetano Cascini - gaetano.cascini@polimi.it

Walter D'Anna

Context

The appliances in the kitchen are low power devices, however they are responsible for a **big amount of electrical energy consumption** in a country. A standard refrigerator consumes about 1 kWh per day. The household energy consumption per year is approximately 21% of the entire production (which is 70000 TWh); 28 per cent of this part is used for refrigeration purposes.

Europe [Sintef]

Politecnico di Milano is involved in an ongoing project with Whirlpool aiming at the development of a "Green Kitchen", i.e. a kitchen with drastically reduced consumption of energy (both electrical and thermal) and water.

WARNING: due to confidentiality issues it is not possible to show the most relevant solutions generated so far.

Context

The **reduction of resources consumption** is a typical goal for many innovation projects, and several attempts to face this challenge have been carried out by means of TRIZ.

The evolution of a technical systems could be described through a S-Curve related to the increase of Ideality (4th Law of Systems Evolution). This increase is not proportional to the decrease of resources consumption.

Context and goal

- Besides, several publications like [1-4] provide just guidelines for driving development of products with criteria for eco-sustainability, regardless of a global vision of the resources consumptions and appropriate criteria for defining priorities of intervention.
 - [1] Russo D., Regazzoni D., Montecchi T.: "Eco-design with TRIZ Laws of Evolution", Proceedings of the TRIZ Future Conference 2009 Timisoara (RO), November, 2009.
 - [2] Russo D., Regazzoni D.: "TRIZ Laws of evolution as eco-innovation method", Proceedings of IDMME Virtual Concept 2008 Beijing, China, October 8 10, 2008.
 - [3] Hideki Kobayashi: "A systematic approach to eco-innovative product design based on life cycle planning", Advanced Engineering Informatics, Volume 20, Issue 2, Engineering Informatics for Eco-Design, April 2006, Pages 113-125
 - [4] Hsiang-Tang Chang, "The Study of Integrating Su-Field Analysis Modeling with Eco-Innovative Concept for Product Design", International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp. 663-670, 2005 4th, 2005

The goal of the present work is to define a roadmap for integrating TRIZ instruments and processes with global resources assessment tools

Outline and roadmap

- Context and goal
- Overview of the proposed roadmap
- Detailed description of the steps and tools of the roadmap
- Exemplary (non confidential) results
- Conclusions

Model of the Technical System

6

Model of TS

- Model of the Technical System
 - List of functions currently delivered by the appliances and related technologies according to user habits.
 - Evaluation Parameters
 - Models of resources consumptions

Functional Phases

The adopted model (NET) [5] is characterized by a fractal structure, such that it is possible to take into account an entire process without the need of modeling in details non-priority phases.

[5] Cascini, G., Rotini, F., Russo D.: "Networks of trends: systematic development of system evolution scenarios", Proceedings of the 8th ETRIA TRIZ Future Conference, Twente, The Netherlands, 5-7 November 2008, ISBN 978-90-365-2749-1, pp. 31- 40.

POLITECNICO DI MILANO

Model of TS

8

Model of the Technical System

KAEMaRT © 2010 Gaetano Cascini – gaetano.cascini@polimi.it

EP classification

[6] Becattini N., Cascini G., Rotini F.: "Correlations between the evolution of contradictions and the law of ideality increase", Proceedings of the 9th TRIZ Future Conference 2009 - Timisoara- Romania, November, 2009.

KAEMaRT © 2010 Gaetano Cascini – gaetano.cascini@polimi.it

10

Model of the Technical System

OVEN: ROAST CHICKEN

Heating

Heat

losses

Th en: 735 Wht

Th en: 188 Wht

Th en: 735 Wht

Fan

El en: 20 Wh

Model of the Technical System

List of functions currently delivered by the appliances

El en: 943 Wh

Legend

El en [Wh]

Th en [Wht]

Electric

grid

Evaluation Parameters

6

0

 \bigcirc

 \bigcirc

Models of resources consumptions

Electric

energy

Overall balance

The Technical Systems of a Domestic Kitchen have different impacts on overall consumptions Balance of resources consumptions

MAIN ISSUE: Definition of **Priorities of Intervention**

Priorities of intervention

The identification of opportunities for resources sharing

The identification of priorities of intervention

Sankey Diagrams allows:

The quantification of waste

*

*

*

*

Model of TS Balance of resources consumptions Knowledge Map Directions for Transition to Super-system

mi.it POLITECNICO DI MILANO

Water >40°C

Knowledge map: reduction of resources consumption

KAEMaRT © 2010 Gaetano Cascini – gaetano.cascini@polimi.it

POLITECNICO DI MILANO

Directions for improving a single TS

- Reduction of resources consumption
 - Efficiency improvement
 - Through the introduction of auxiliary functions
 - Reduction of waste and recovery for reuse

Directions for improving a single TS

More appropriate use of X-appliance

- Reduction of resources consumption
- Efficiency improvement \checkmark
- Through the introduction of auxiliary functions *
- Reduction of waste and recovery for reuse **

Washing machine with an air bubble generator

Directions for improving a single TS

Transitions to supersystem

- Reduction of resources consumption
 - Systems Integration
 - o Identify common functions
 - Compare behaviors and identify integrable subsystems
 - Define "mono-bi-poly" appliances/submodules

										•				Asse				5	
Appl.		Ref	Eleme	ent	Function		0	bject		E						_			
Dish	Dish 1 Spray pump			ump I	ncrease pressure	Water and detergents			E										
Dish	+	1.1 Pressurized water		dwater	Direct - move Spray arm			E											
_				· · · · · · · · · · · · · · · · · · ·		1					1	1			r				
		Poss	ible integration		Appliance	Wash	Wash	Wash	Wash	Wash	Wash	Wash	Wash	Wash	Wash	W	ash Wa	sh V	Nash
		Possible	e integration after	•	Reference	1	1.1	1.1.1	2	3	4								0
					_			-	_	Dead		Appliance		nce	wash W		Wash		
		Se	everal dubts		Element	Motor	<u>Dr.m</u>	Drum	Drum	volume	Heater	Reference		1	1 1.1		9r		
				•	Function	Maria	Maya	from clothes		Collect	lleat					-			New
					Function	wove	Clothes	from clothes		Collect	пеас								netion
	Appl.	Ref	Element	Function	Object	Drum	-Water	Water	Clothes	Water	Cold water	Element			Mo	tor	Drum		
	Dish	1	Spray pump	Increase pressure	Water and detergents							- -							1
	Dish	1.1	Pressurized water	Direct - move	Spray arm							Eurotian							
	Dish	1.1.1	Spray arm	Direct - move	Water - Dishes							Function				ve	Nove		
	Dish	1.1.2	Spray arm	Carry - move	Detergents												Clothes	<u> </u>	
	Dish	2	Heater	Heat	Cold water						E	Object			Dra		-Water		
	Dish	2.1	Hot water	Heat	Dishes							Diject					-water		
	Dish	2.1.1	Hot dishes	Vaporize - Move aw	ay Water			В											
	Dish	3	Softener	Reduce Ph	Water														L
	Dish	3.1	Rigenerator	Rigenarate	Salt														
	Dish	4	Sump	Collect	Water and detergents					D					\vdash				
	Dish	5	Racks	Кеер	Dishes				C						┢──┤				
	Dish	6	Drain pump	Move	Dirty water and particles									F					
	Dish	7	Filter	Filter	Water										G				
	Dish	8	Insulating material	Thermal insulate	Case										\vdash				
	Dish	0		New function			A										H		

Assessment of scenarios

Number of promising directions of evolution

Resource Appliance	Water	Thermal Energy	Electric Energy	Total
Dishwasher	13	7	9	29
Washing Machine	10	5	10	25
Oven		10	4	14
Cooktop		3	3	6
Refrigerator		16	9	25
Total	23	41	35	99

	Resource	Wc	iter	Therma	l Energy	Electric Energy			
cted gs of	Appliance	Cycle	Weekly	Cycle	Weekly	Cycle	Weekly		
irces	Dishwasher	-25%	-5%	-13%	-3%	n.a.	n.a.		
)	Washing Machine	-24÷32%	-18÷24%	-60÷73%	-47÷58%	-0,3÷2,2%	-0,01÷0,09%		
	Oven	11	//	n.a	n.a	n.a	n.a		
	Cooktop		//	n.a.	n.a	n.a.	n.a.		
	Refrigerator		//	-10÷50%	-4÷20%	n.a.	n.a.		

Expected savings of resources (max)

 $\boldsymbol{\wedge}$

KAEMaRT © 2010 Gaetano Cascini – gaetano.cascini@polimi.it

Conclusions

Advantages of the proposed Step-by-Step Algorithm

User oriented modeling of functions

System Thinking

- o Model of resources consumptions at different detail level
- Knowledge Map suitable for all the appliances

Quantitative criteria for the definition of priorities of intervention

- o Immediate feedback about relevance of Technical Contradictions
- Quantitative criteria for the assessment of evolutionary scenarios

Future steps

- Start virtual/experimental validation of a selection of the proposed scenarios
- Define a step-by-step procedure for guiding the application of the proposed roadmap in different contexts
- Develop a Computer-Aided tool based on the proposed procedure